|  e-ISSN: 2979-9848

Original article | Food Bulletin 2022, Vol. 1(1) 21-36

A Review on Spoilage Microorganisms in Fresh and Processed Aquatic Food Products

Albaris B. Tahiluddin, Iannie P. Maribao, Merilyn Q. Amlani, Jurmin H. Sarri

pp. 21 - 36   |  DOI: https://doi.org/10.29329/foodb.2022.495.05   |  Manu. Number: MANU-2212-17-0004.R1

Published online: December 30, 2022  |   Number of Views: 52  |  Number of Download: 118


Aquatic food products are greatly perishable owing to their biological compositions. Spoilage is defined as any alteration in food products that lead to unacceptable attributes to the consumers, mainly through sensory perception. Microbial spoilage is a common type of spoilage among seafood products. In this paper, we reviewed and discussed the various spoilage microorganisms (molds, yeasts, and bacteria) in fresh and processed fish and fishery products. Many studies reported that processed fishery products, such as salted, dried, and hot-smoked fish, are commonly spoiled by molds, mainly under the genus of Aspergillus and Penicillium. Yeasts as spoilage agents have been associated with fish and fishery products stored at low temperatures, notably dominated by two genera, Candida and Rhodotorula, while other yeast species have also been linked to heavily-salted fish and fermented aquatic foods. The important genera of spoilage bacteria that have been documented in fresh and processed fish and fishery products were Pseudomonas, Alcaligenes, Aeromonas, Enterobacter, Bacillus, Enterococcus, Psychrobacter, Escherichia coli, Listeria, Brochothrix, and Shewanella species. Microorganisms play an important role in the spoilage of processed and fresh fish/fishery products. Further research should be undertaken to fully understand the microbial world, particularly associated with aquatic food products.

Keywords: Aquatic food products, Bacteria, Microbial spoilage, Molds, Yeasts

How to Cite this Article?

APA 6th edition
Tahiluddin, A.B., Maribao, I.P., Amlani, M.Q. & Sarri, J.H. (2022). A Review on Spoilage Microorganisms in Fresh and Processed Aquatic Food Products . Food Bulletin, 1(1), 21-36. doi: 10.29329/foodb.2022.495.05

Tahiluddin, A., Maribao, I., Amlani, M. and Sarri, J. (2022). A Review on Spoilage Microorganisms in Fresh and Processed Aquatic Food Products . Food Bulletin, 1(1), pp. 21-36.

Chicago 16th edition
Tahiluddin, Albaris B., Iannie P. Maribao, Merilyn Q. Amlani and Jurmin H. Sarri (2022). "A Review on Spoilage Microorganisms in Fresh and Processed Aquatic Food Products ". Food Bulletin 1 (1):21-36. doi:10.29329/foodb.2022.495.05.


    Abdel-Aziz, S. M., Asker, M., Keera, A. A., & Mahmoud, M. G. (2016). Microbial food spoilage: Control strategies for shelf-life extension. In N. Garg, S. M. Abdel-Aziz & A. Aeron (Eds.), Microbes in food and health (pp. 239-264). Springer.

    Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine, 2020, 1-19. https://doi.org/10.1155/2020/4674235

    Abraha, B., Admassu, H., Mahmud, A., Tsighe, N., Shui, X. W., & Fang, Y. (2018). Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process & Technology, 6(4), 376-382.

    Adebayo-Tayo, A. C., Odu, N. N., Michael, M. U., & Okonko, I. O. (2012a). Multi-drug resistant (MDR) organisms isolated from sea-foods in Uyo, South-Southern Nigeria. Nature and Science10(3), 61-70.

    Adebayo-Tayo, B. C., Odu, N. N., & Okonko, I. O. (2012b). Microbiological and physiochemical changes and its correlation with quality indices of tilapia fish (Oreochromis niloticus) sold in Itu and Uyo markets in Akwa Ibom State, Nigeria. New York Science Journal, 5, 38-45.

    Adebowale, B. A., Dongo, L. N., Jayeola, C. O., & Orisajo, S. B. (2008). Comparative quality assessment of fish (Clarias gariepinus) smoked with cocoa pod husk and three other different smoking materials. Journal of Food Technology, 6(1), 5-8.

    Adedeji, O. B., Okerentugba, P. O., Innocent-Adiele, H. C., & Okonko, I. O. (2012). Benefits, public health hazards and risks associated with fish consumption. New York Science Journal, 5(9), 33-61.

    Adeyeye, S. A. O. (2016). Traditional fish processing in Nigeria: A critical review. Nutrition & Food Science, 46(3), 321-335. https://doi.org/10.1108/NFS-11-2015-0148

    Adrah, K., & Tahergorabi, R. (2022). Ready-to-eat products elaborated with mechanically separated fish meat from waste processing. In C. Galanakis (Ed.), Sustainable fish production and processing (pp. 227-257). Academic Press. https://doi.org/10.1016/B978-0-12-824296-4.00006-2

    Alasalvar, C., Garthwaite, T., & Öksüz, A. (2002). Practical evaluation of fish quality. In A. Cesarettin & T. Taylor (Eds.), Seafoods - Quality, technology and nutraceutical applications (pp. 17-31). Springer.

    Aleksandra, J., Tomasz, G., Magdalena, G., Beata, K., & Krzysztof, K. (2022). Potential risk of botulinum neurotoxin-producing clostridia occurrence in canned fish. Journal of Veterinary Research, 66(4), 605-611. https://doi.org/10.2478/jvetres-2022-0060

    Ali, A., Wei, S., Ali, A., Khan, I., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, Y., & Liu, S. (2022). Research progress on nutritional value, preservation and processing of fish-A review. Foods, 11(22), 3669. https://doi.org/10.3390/foods11223669

    AMEC. (2003). Management of wastes from Atlantic seafood processing operations. National Programme of Action Atlantic Regional Team.

    Amos, B., Sector, F., Einarsson, H., & Eythorsdottir, A. (2007). Analysis of quality deterioration at critical steps/points in fish handling in Uganda and Iceland and suggestions for improvement. The United Nations University (UNU) Fisheries Training Programme, 1-35.

    Arason, S., Nguyen, M. V., Thorarinsdottir, K. A., & Thorkelsson, G. (2014). Preservation of fish by curing. In I. S. Boziaris (Ed.), Seafood processing: Technology, quality and safety (pp. 129-160). Wiley. https://doi.org/10.1002/9781118346174.ch6

    Ashie, I. N. A., Smith, J. P., Simpson, B. K., & Haard, N. F. (1996). Spoilage and shelf‐life extension of fresh fish and shellfish. Critical Reviews in Food Science & Nutrition36(1-2), 87-121. https://doi.org/10.1080/10408399609527720

    Ayeloja, A. A. (2020). Glimpse of fish as perishable staple. Al-Qadisiyah Journal for Agriculture Sciences10(2), 349-375. https://doi.org/10.33794/qjas.2020.167497

    Azma, A., & Zhang, Y. (2021). The role of bacteria in groundwater quality assessment. 3rd Conference on Environment, Civil, Architecture and Urban Development. Valencia.

    Baird-Parker, T. C. (2000). The production of microbiologically safe and stable foods. The Microbiological Safety and Quality of Food, 1, 3-18.

    Beatty, S. A., & Gibbons, N. E. (1937). The measurement of spoilage in fish. Journal of the Biological Board of Canada3(1), 77-91. https://doi.org/10.1139/f37-007

    Beddows, C. G. (1998). Fermented fish and fish products. In B. J. B. Wood (Ed.), Microbiology of fermented foods (pp. 416-440). Springer. https://doi.org/10.1007/978-1-4613-0309-1_13

    Berkel, B. M., Boogaard B. V., & Heijnen, C. (2004). Preservation of fish and meat. Agromisa Foundation.

    Biango-Daniels, M. N., & Hodge, K. T. (2018). Sea salts as a potential source of food spoilage fungi. Food Microbiology, 69, 89-95. https://doi.org/10.1016/j.fm.2017.07.020

    Blackburn, C. (2006). Food spoilage microorganisms. Woodhead.

    Boziaris, I. S., & Parlapani, F. F. (2017). Specific spoilage organisms (SSOs) in fish. In A. Bevilacqua, M. R. Corbo & M. Sinigaglia (Eds.), The microbiological quality of food (pp. 61-98). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100502-6.00006-6

    Bratt, L. (2010). Fish canning handbook. Wiley Blackwell.

    Brito, I. L. (2021). Examining horizontal gene transfer in microbial communities. Nature Reviews Microbiology, 19(7), 442-453. https://doi.org/10.1038/s41579-021-00534-7

    Calmorin, L. P., Calmorin, A. M., & Tinaypan, A. S. (1990). Introduction to fishery technology. National Book Store.

    Casalinuovo, F., Gazzotti, T., Rippa, P., Ciambrone, L., Musarella, R., & Pratticò, E. (2015). Microbiological stability of canned tuna produced in Italy and in non-European countries. Italian Journal of Food Safety, 4(1), 58-61. https://doi.org/10.4081/ijfs.2015.4780

    Chakrabarti, R., & Varma, P. R. G. (2000). The sensitivity of halotolerant Aspergillus flavus, Aspergillus niger and Penicillium sp. to propionate, sorbate and benzoate. Journal of Food Science and Technology-Mysore, 37(1), 72-74.

    Cheng, J. H., Sun, D. W., Zeng, X. A., & Liu, D. (2015). Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Critical Reviews in Food Science and Nutrition, 55(7), 1012-1225. https://doi.org/10.1080/10408398.2013.769934

    Chitrakar, B., Zhang, M., & Adhikari, B. (2019). Dehydrated foods: Are they microbiologically safe? Critical Reviews in Food Science and Nutrition59(17), 2734-2745. https://doi.org/10.1080/10408398.2018.1466265

    Coimbra, A., Ferreira, S., & Duarte, A. P. (2022). Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chemistry, 133370. https://doi.org/10.1016/j.foodchem.2022.133370

    Comi, G. (2017). Spoilage of meat and fish. In A. Bevilacqua, M. R. Corbo & M. Sinigaglia (Eds.), The microbiological quality of food (pp. 179-210). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100502-6.00011-X

    Diwan, A. D., Harke, S. N., & Panche, A. N. (2022). Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. Journal of Animal Physiology and Animal Nutrition106(2), 441-469. https://doi.org/10.1111/jpn.13619

    Doe, P., & Olley, J. (2020). Drying and dried fish products. In Z. E. Sikorski (Ed.), Seafood: Resources, nutritional composition, and preservation (pp. 125-145). CRC Press. https://doi.org/10.1201/9781003068419-10

    Dorman, C. J. (2020). Structure and function of the bacterial genome. John Wiley & Sons.

    Dutta, M., Majumdar, P. R., Rakeb-Ul-Islam, M. D., & Saha, D. (2018). Bacterial and fungal population assessment in smoked fish during storage period. Journal of Food: Microbiology, Safety & Hygiene, 3(1), 1-7. https://doi.org/10.4172/2476-2059.1000127

    Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, R. P. (2018). The gut microbiota of marine fish. Frontiers in Microbiology, 9, 1-17. https://doi.org/10.3389/fmicb.2018.00873

    Elsayed, J., Mahmoud, J. K., Alsayed, N. K., Mahmoud, S. A., & Amin, H. (2020). Impact of smoking pretreatment on the quality of canned mackerel (Scomber scombrus) in oil or ketchup during storage. Aquatic Science and Fish Resources (ASFR), 1(0), 1-6. https://doi.org/10.21608/asfr.2020.40693.1004

    Erkmen, O., & Bozoglu, T. (2016). Food microbiology: Principles into practice. John Wiley & Sons.

    Espejo-Hermes, J. (2004). Fish processing technology in the tropics. Tawid Publications.

    Essien, J. P., Ekpo, M. A., & Brooks, A. A. (2005). Mycotoxigenic and proteolytic potential of moulds associated with smoked shark fish (Chlamydoselachus anguincus). Journal of Applied Sciences and Environmental Management, 9(3), 53-57. https://doi.org/10.4314/jasem.v9i3.17352

    FAO. (2020). The state of world fisheries and aquaculture 2020. https://doi.org/10.4060/ca9229en

    Fleet, G. (1992). Spoilage yeasts. Critical Reviews in Biotechnology, 12(1-2), 1-44. https://doi.org/10.3109/07388559209069186

    Flick, G. J. (2010). Smoked fish (part III. Smoking, storage, microbiology). https://seafood.oregonstate.edu/sites/agscid7/files/snic/smoked-fish-part-iii-virginia-tech.pdf

    Françoise, L. (2010). Occurrence and role of lactic acid bacteria in seafood products. Food Microbiology27(6), 698-709. https://doi.org/10.1016/j.fm.2010.05.016

    Freitas, J. D., Pereira Neto, L. M., Silva, T. I. B. D., Oliveira, T. F. L. D., Rocha, J. H. L. D., Souza, M. D., Marchii, P. G. F. D., & Araújo, Á. V. D. (2020). Counting and identification of molds and yeasts in dry salted shrimp commercialized in Rio Branco, Acre, Brazil. Food Science and Technology, 41(1), 284-289. https://doi.org/10.1590/fst.16720

    Galaviz-Silva, L., Goméz-Anduro, G., Molina-Garza, Z. J., & Ascencio-Valle, F. (2008). Food safety issues and the microbiology of fish and shellfish. In N. L. Heredia, I. V. Wesley & J. S. Garcia (Eds.), Microbiologically safe foods (pp. 227-273). Wiley.

    Garthwaite, G. A. (1997). Chilling and freezing of fish. In G. M. Hall (ed.), Fish processing technology (pp. 93-118). Springer. https://doi.org/10.1007/978-1-4613-1113-3_4

    Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques. American Journal of Applied Sciences7(7), 859.

    Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., & Dave, D. (2013). Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. Journal of Microbial & Biochemical Technology, 5(4), 107-129. https://doi.org/10.4172/1948-5948.1000110

    Gram, L., & Huss, H. H. (1996). Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, 33(1), 121-137. https://doi.org/10.1016/0168-1605(96)01134-8

    Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., & Givskov, M. (2002). Food spoilage-Interactions between food spoilage bacteria. International Journal of Food Microbiology, 78(1-2), 79-97. https://doi.org/10.1016/S0168-1605(02)00233-7

    Gram, L. (2009). Microbiological spoilage of fish and seafood products. In W. H. Sperber & M. P. Doyle (Eds.), Compendium of the microbiological spoilage of foods and beverages (pp. 87-119). Springer. https://doi.org/10.1007/978-1-4419-0826-1_4

    Hafez, N. E., Awad, A. M., Ibrahim, S. M., Mohamed, H. R., & El-Lahamy, A. A. (2019). Effect of salting process on fish quality. Journal of Nutrition and Food Processing, 2(1), 1-6. https://doi.org/10.31579/2637-8914/011

    Hasan, N. U., Ejaz, N., Ejaz, W., & Kim, H. S. (2012). Meat and fish freshness inspection system based on odor sensing. Sensors, 12(11), 15542-15557. https://doi.org/10.3390/s121115542

    Hassan, A. A., Hassan, A. M., El Shafei, H. M., El Ahl, M. H. S. R., & Abd El-Dayem, R. H. (2011). Detection of aflatoxigenic moulds isolated from fish and their products and its public health significance. Nature and Science, 9(9), 106-114.

    Hauzoukim, S. S., & Mohanty, B. (2020). Modified atmosphere packaging of fish and fishery products: A review. Journal of Entomology and Zoology Studies, 8(4), 651-659.

    Hoel, S., Lerfall, J., & Jakobsen, A. N. (2022). Growth and spoilage potential of an Aeromonas salmonicida strain in refrigerated Atlantic cod (Gadus morhua) stored under various modified atmospheres. Foods, 11(18), 2757. https://doi.org/10.3390/foods11182757

    Horner, W. F. A. (1997). Preservation of fish by curing (drying, salting and smoking). In G. M. Hall (Ed.), Fish processing technology (pp. 32-73). Springer. https://doi.org/10.1007/978-1-4613-1113-3_2

    Howell, K. (2015). Spoilage: Yeast spoilage of food and beverages. Encyclopedia of Food and Health, 113-117. https://doi.org/10.1016/B978-0-12-384947-2.00650-4

    Huang, Q., Jiao, X., Yan, B., Zhang, N., Huang, J., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2022). Changes in physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi during chilled storage: The roles of spoilage bacteria. Food Chemistry, 387, 132847. https://doi.org/10.1016/j.foodchem.2022.132847

    Huss, H. H. (1988). Fresh fish--quality and quality changes: A training manual prepared for the FAO/DANIDA training programme on fish technology and quality control. Food & Agriculture Organization.

    Iacumin, L., Pellegrini, M., Sist, A., Tabanelli, G., Montanari, C., Bernardi, C., & Comi, G. (2022). Improving the shelf-life of fish burgers made with a mix of sea bass and sea bream meat by bioprotective cultures. Microorganisms, 10(9), 1786. https://doi.org/10.3390/microorganisms10091786

    Ianieva, O. D., & Ogirchuk, K. S. (2018). Yeasts associated with salted herring and brine, Ukraine. Мікробіологічний журнал, 80(2), 80-91. https://doi.org/10.15407/microbiolj80.02.080

    Ikape, S. I. (2017). Fish spoilage in the tropics: A review. Octa Journal of Biosciences5(2), 34-37.

    in’t Veld, J. H. H. (1996). Microbial and biochemical spoilage of foods: An overview. International Journal of Food Microbiology, 33(1), 1-18. https://doi.org/10.1016/0168-1605(96)01139-7

    Inanoglu, S., Barbosa‐Cánovas, G. V., Sablani, S. S., Zhu, M. J., Keener, L., & Tang, J. (2022). High‐pressure pasteurization of low‐acid chilled ready‐to‐eat food. Comprehensive Reviews in Food Science and Food Safety, 21(6), 4939-4970. https://doi.org/10.1111/1541-4337.13058

    Jarosz, A., Grenda, T., Goldsztejn, M., Kozak, B., & Kwiatek, K. (2022). Potential risk of botulinum neurotoxin-producing clostridia occurrence in canned fish. Journal of Veterinary Research, 66(4), 605-611. https://doi.org/10.2478/jvetres-2022-0060

    Jessen, F., Nielsen, J., & Larsen, E. (2014). Chilling and freezing of fish. In I. S. Boziaris (Ed.), Seafood processing: Technology, quality and safety (pp. 33-59). John Wiley & Sons. https://doi.org/10.1002/9781118346174.ch3

    Johnson, A. L., Keesler, R. I., Lewis, A. D., Reader, J. R., & Laing, S. T. (2022). Common and not-so-common pathologic findings of the gastrointestinal tract of Rhesus and Cynomolgus Macaques. Toxicologic Pathology, 50(5), 638-659. https://doi.org/10.1177/01926233221084634

    Jonsyn, F. E., & Lahai, G. P. (1992). Mycotoxic flora and mycotoxins in smoke-dried fish from Sierra Leone. Nahrung, 36(5), 485-489. https://doi.org/10.1002/food.19920360510

    Kawai, T., & Sakaguchi, M. (1996). Fish flavor. Critical Reviews in Food Science & Nutrition, 36(3), 257-298. https://doi.org/10.1080/10408399609527725

    Khan, F., Jeong, G. J., Tabassum, N., Mishra, A., & Kim, Y. M. (2022). Filamentous morphology of bacterial pathogens: Regulatory factors and control strategies. Applied Microbiology and Biotechnology, 106(18), 5835-5862. https://doi.org/10.1007/s00253-022-12128-1

    Kim, J. S., & Park, J. W. (2007). Mince from seafood processing by-product and surimi as food ingredients. In F. Shahidi (Ed.), Maximising the value of marine by-products (pp. 196-228). Woodhead Publishing.

    Kobatake, M., Tonogai, Y., & Ito, Y., (1988). Time courses for viable counts, pH and total volatile basic nitrogen in squid homogenates (Ommastraphes bartrami) inoculated with spoilage yeast or bacteria. Journal of Food Protection, 51(12), 971-975.

    Kouakou, A. C., Cisse, M., Kossonou, E., Brou, K. D., Marcellin, K. D., & Didier, M. (2012). Identification of yeasts associated with the fermented fish, adjuevan, of Ivory Coast by using the molecular technique of PCR-denaturing gradient gel electrophoresis (DGGE). African Journal of Microbiology Research, 6(19), 4138-4145. https://doi.org/10.5897/AJMR11.1391

    Kuley, E., Durmus, M., Balikci, E., Ucar, Y., Regenstein, J. M., & Özoğul, F. (2017). Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products. International Journal of Food Properties, 20(5), 1029-1043. https://doi.org/10.1080/10942912.2016.1193516

    Kuley, E., Özyurt, G., Özogul, I., Boga, M., Akyol, I., Rocha, J. M., & Özogul, F. (2020). The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability. Microorganisms, 8(2), 172. https://doi.org/10.3390/microorganisms8020172

    Kumari, M., Kokkiligadda, A., Dasriya, V., & Naithani, H. (2022). Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. Journal of Applied Microbiology, 133(1), 104-119. https://doi.org/10.1111/jam.15342

    Kyule, D. N., Maingi, J. M., Njeru, E. M., & Nyamache, A. K. (2022). Molecular characterization and diversity of bacteria isolated from fish and fish products retailed in Kenyan markets. International Journal of Food Science, 2022, 2379323. https://doi.org/10.1155/2022/2379323

    Laorenza, Y., Chonhenchob, V., Bumbudsanpharoke, N., Jittanit, W., Sae-Tan, S., Rachtanapun, C., Chanput, W. P., Charoensiddhi, S., Srisa, A., Promhuad, K., Wongphan, P., & Harnkarnsujarit, N. (2022). Polymeric packaging applications for seafood products: Packaging-deterioration relevance, technology and trends. Polymers, 14(18), 3706. https://doi.org/10.3390/polym14183706

    Leonard, B. (2011). Fish and fishery products: Hazards and controls guidance. DIANE Publishing.

    Lianou, A., Panagou, E. Z., & Nychas, G. J. (2016). Microbiological spoilage of foods and beverages. In P. Subramaniam (Ed.), The stability and shelf life of food (pp. 3-42). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100435-7.00001-0

    Lindsay, R. C. (1990). Fish flavors. Food Reviews International, 6(4), 437-455. https://doi.org/10.1080/87559129009540886

    Lindsay, R. C. (1994). Flavour of fish. In F. Shahidi & J. R. Botta (Eds.), Seafoods: Chemistry, processing technology and quality (pp. 75-84). Springer. https://doi.org/10.1007/978-1-4615-2181-5_6

    Lougovois, V. P., & Kyrana, V. R. (2005). Freshness quality and spoilage of chill-stored fish. Food Policy, Control and Research1, 35-86.

    Lyhs, U., Koort, J. M. K., Lundstrom, H. S., & Bjorkroth, K. J. (2004). Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. International Journal of Food Microbiology, 90(2), 207-218. https://doi.org/10.1016/S0168-1605(03)00303-9

    Mahon, C. R. (2023). Bacterial cell structure, physiology, metabolism, and genetics. In C. R. Mahon & D. Lehman (Eds.), Textbook of diagnostic microbiology - E-book (pp. 2-24). Elsevier.

    Mei, J., Ma, X., & Xie, J. (2019). Review on natural preservatives for extending fish shelf life. Foods8(10), 490. https://doi.org/10.3390%2Ffoods8100490

    Mir, S. A., Farooq, S., Shah, M. A., & Mir, M. B. (2022). Decontamination of fish and fish products. In M. A. Shah & S. A. Mir (Eds.), Microbial decontamination of food (pp. 251-257). Springer.

    Mittal, J., Szymczak, W. A., Pirofski, L., & Galen, B. T. (2018). Fungemia caused by Aureobasidium pullulansin a patient with advanced AIDS: A case report and review of the medical literature. JMM Case Reports, 5(4), e005144. https://doi.org/10.1099/jmmcr.0.005144

    Mohanty, B. P., Mahanty, A., Ganguly, S., Mitra, T., Karunakaran, D., & Anandan, R. (2017). Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chemistry, 293, 561-570. https://doi.org/10.1016/j.foodchem.2017.11.039

    Morsy, M. K., Zór, K., Kostesha, N., Alstrøm, T. S., Heiskanen, A., El-Tanahi, H., Sharoba, A., Papkovsky, D., Larsen, J., Khalaf, H., Jakobsen, M. H., & Emnéus, J. (2016). Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control, 60, 346-352. https://doi.org/10.1016/j.foodcont.2015.07.038

    Nielsen, J., & Jessen, F. (2007). Quality of frozen fish. In L. M. L. Nollet (Ed.), Handbook of meat, poultry and seafood quality (pp. 577-586). John Wiley & Sons. https://doi.org/10.1002/9781118352434.ch31

    Novotny, L., Dvorska, L., Lorencova, A., Beran, V., & Pavlik, I. (2004). Fish: A potential source of bacterial pathogens for human beings. Veterinarni Medicina49(9), 343. https://doi.org/10.17221/5715-VETMED

    Nur, I. T., Ghosh, B. K., & Acharjee, M. (2020). Comparative microbiological analysis of raw fishes and sun-dried fishes collected from the Kawran bazaar in Dhaka city, Bangladesh. Food Research, 4(3), 846-851. https://doi.org/10.26656/fr.2017.4(3).368

    Oladayo, T., Miteu, G., Addeh, I., Folayan, E., Olayinka, T., Adegboyega, J., Ojeokun, O., Ogah, S., & Benneth, E. (2022). Most prominent factors of food poisoning in Africa: Nigeria based perspective. IPS Journal of Nutrition and Food Science, 1(1), 11-17. https://doi.org/10.54117/ijnfs.v1i1.1

    Omojowo, F. S., & Iluahi, J. A. (2021). Microbiological quality and safety of smoked fish from Kainji Lake area. African Scientist, 7(4), 177-181.

    Oranusi, S., Obioha, T. U., & Adekeye, B. T. (2014). Investigation on the microbial profile of frozen foods: Fish and meat. International Journal of Advanced Research in Biological Sciences1(2), 71-78.

    Pachaiappan, R., Rajendran, S., Show, P. L., Manavalan, K., & Naushad, M. (2021). Metal/metal oxide nanocomposites for bactericidal effect: A review. Chemosphere, 272, 128607. https://doi.org/10.1016/j.chemosphere.2020.128607

    Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69(2), 515-520. https://doi.org/10.1016/j.talanta.2005.10.046

    Pal, M. (2010). Fish hygiene. MSc Lecture Notes, Addis Ababa University, Faculty of Veterinary Medicine.

    Pal, M., Ketema, A., Manyazewal Anberber, M., Mulu, S., & Yashodhara Dutta, Y. (2016). Microbial quality of fish and fish products. Beverage & Food World, 43(2), 46-49.

    Parajuli, N. (2018). Effect of salt content and fermentation time on physico-chemical properties of fermented fish sauce (Doctoral dissertation, Tribhuvan University).

    Petruzzi, L., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Microbial spoilage of foods: Fundamentals. In A. Bevilacqua, M. R. Corbo & M. Sinigaglia (Eds.), The microbiological quality of food (pp. 1-21). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100502-6.00002-9

    Popkov, V. A., Zharikova, A. A., Demchenko, E. A., Andrianova, N. V., Zorov, D. B., & Plotnikov, E. Y. (2022). Gut microbiota as a source of uremic toxins. International Journal of Molecular Sciences, 23(1), 483. https://doi.org/10.3390/ijms23010483

    Prasai, S., Shrestha, P., Pandey, S., Adhikari, I., Gurung, S., & Prajapati, K. (2022). Microbial quality assessment of raw freshwater fish sold in local markets of Kathmandu Valley. Nepal Journal of Biotechnology10(1), 7-12. https://doi.org/10.54796/njb.v10i1.225

    Rasco, B., & Hilderbrand, K. S. (2009). Pickling fish and other aquatic foods for home use. https://ucanr.edu/sites/camasterfoodpreservers/files/341240.pdf

    Rasul, M. G., Yuan, C., Yu, K., Takaki, K., & Shah, A. K. M. A. (2022). Factors influencing the nutritional composition, quality and safety of dried fishery products. Food Research, 6(5), 444-466.

    Rathod, N. B., Nirmal, N. P., Pagarkar, A., Özogul, F., & Rocha, J. M. (2022). Antimicrobial impacts of microbial metabolites on the preservation of fish and fishery products: A Review with current knowledge. Microorganisms, 10(4), 773. https://doi.org/10.3390/microorganisms10040773

    Rawat, S. (2015). Food spoilage: Microorganisms and their prevention. Asian Journal of Plant Science and Research, 5(4), 47-56.

    Reblová, Z., Aubourg, S. P., & Pokorný, J. (2022). The effect of different freshness of raw material on lipid quality and sensory acceptance of canned sardines. Foods, 11(13), 1987. https://doi.org/10.3390/foods11131987

    Rhea, F. (2009). Microbiology handbook: Fish and seafood. Leatherhead Food International Ltd. Surrey.

    Romero, J., Ringø, E., & Merrifield, D. L. (2014). The gut microbiota of fish. In D. Merrifield & E. Ringø (Eds.), Aquaculture nutrition: Gut health, probiotics and prebiotics (pp.75-100). John Wiley & Sons. https://doi.org/10.1002/9781118897263.ch4

    Roy, B., Maitra, D., Podder, R., Ghosh, J., & Mitra, A. K. (2022). Biotechnological applications extremophiles: The golden epoch ahead. In M. P. Shah & S. Dey (Eds.), Extremophiles: A paradox of nature with biotechnological implications. De Gruyter. https://doi.org/10.1515/9783110788488-013

    Russell, F., & Gilmore, D. (2018). Experiments in soil biology and biochemistry. Scientific E-Resources.

    Sahu, M., & Bala, S. (2017). Food processing, food spoilage and their prevention: An overview. International Journal of Life-Sciences Scientific Research, 3(1), 753-759. https://doi.org/10.21276/ijlssr.2017.3.1.1

    Sakthipriya, N., Doble, M., & Sangwai, J. S. (2022). Performance of thermophilic strain on the reduction of viscosity of crude oil under high pressure and high temperature conditions: Experiments and modeling. Journal of Petroleum Science and Engineering, 210, 110016. https://doi.org/10.1016/j.petrol.2021.110016

    Salwan, R., & Sharma, V. (2022). Plant beneficial microbes in mitigating the nutrient cycling for sustainable agriculture and food security. In V. Kumar, A. Kumar, S. Suprasanna & P. Suprasanna (Eds.), Plant nutrition and food security in the era of climate change (pp. 483-512). Academic Press. https://doi.org/10.1016/B978-0-12-822916-3.00010-X

    Sheng, L., & Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20(1), 738-786. https://doi.org/10.1111/1541-4337.12671

    Sheppard, S. K., Guttman, D. S., & Fitzgerald, J. R. (2018). Population genomics of bacterial host adaptation. Nature Reviews Genetics, 19(9), 549-565. https://doi.org/10.1038/s41576-018-0032-z

    Singh, R. P., & Anderson, B. A. (2004). The major types of food spoilage: An overview. In R. Steele (Ed.), Understanding and measuring the shelf-life of food (pp. 3-23). CRC Press. https://doi.org/10.1533/9781855739024.1.3

    Singh, P., Danish, M., & Saxena, A. (2021). Spoilage of fish-process and its prevention. Retrieved December 13, 2022, from http://aquafind.com/articles/spolage.php

    Singh, V. (2023). Microbial bioactive components: Sources, applications, and sustainability. In M. Thakur & T. Belwal (Eds.), Bioactive components (pp. 103-117). Springer. https://doi.org/10.1007/978-981-19-2366-1_7

    Sivaraman, G. K., & Siva, V. (2015). Microbiological spoilage of dried fishes. SSRN, 1-5. https://doi.org/10.2139/ssrn.2709070

    Sohrabi, H., Majidi, M. R., Khaki, P., Jahanban‐Esfahlan, A., de la Guardia, M., & Mokhtarzadeh, A. (2022). State of the art: Lateral flow assays toward the point‐of‐care foodborne pathogenic bacteria detection in food samples. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1868-1912. https://doi.org/10.1111/1541-4337.12913

    Susanto, E. (2011). Fish and fishery products microbiology: Bacteria on fish. https://docplayer.net/29609494-Fish-and-fishery-products-microbiology-3-2-1.html

    Syropoulou, F., Anagnostopoulos, D. A., Parlapani, F. F., Karamani, E., Stamatiou, A., Tzokas, K., Nychas, G. J. E., & Boziaris, I. S. (2022). Microbiota succession of whole and filleted European sea bass (Dicentrarchus labrax) during storage under aerobic and MAP conditions via 16S rRNA gene high-throughput sequencing approach. Microorganisms, 10(9), 1870. https://doi.org/10.3390/microorganisms10091870

    Tahiluddin, A. B., & Kadak, A. E. (2022). Traditional fish processing techniques applied in the Philippines and Turkey. Menba Kastamonu University Faculty of Fisheries Journal, 8(1), 50-58.

    Takano, C., & Aoyagi, H. (2022). Screening and isolation of acid-tolerant bacteria using a novel pH shift culture method. Journal of Bioscience and Bioengineering, 134(6), 521-527. https://doi.org/10.1016/j.jbiosc.2022.08.009

    Tidwell, J. H., & Allan, G. L. (2001). Fish as food: Aquaculture's contribution. EMBO Reports2(11), 958-963. https://doi.org/10.1093/embo-reports/kve236

    Tofalo, R., Fusco, V., Böhnlein, C., Kabisch, J., Logrieco, A. F., Habermann, D., Cho, G. S., Benomar, N., Abriouel, H., Schmidt-Heydt, M., Neve, H., Bockelmann, W., & Franz, C. M. (2020). The life and times of yeasts in traditional food fermentations. Critical Reviews in Food Science and Nutrition, 60(18), 3103-3132. https://doi.org/10.1080/10408398.2019.1677553

    Torell, E. C., Jamu, D. M., Kanyerere, G. Z., Chiwaula, L., Nagoli, J., Kambewa, P., Brooks, A., & Freeman, P. (2020). Assessing the economic impacts of post-harvest fisheries losses in Malawi. World Development Perspectives, 19, 100224. https://doi.org/10.1016/j.wdp.2020.100224

    Truninger, M., Baptista, J. A., Evans, D. M., Jackson, P., & Nunes, N. C. (2020). What is a fresh fish? In E. Probyn, K. Johnston & N. Lee (Eds.), Sustaining seas: Oceanic space and the politics of care (pp. 87). Rowman & Littlefield International Ltd.

    Varlet, V., Knockaert, C., Prost, C., & Serot, T. (2006). Comparison of odor-active volatile compounds of fresh and smoked salmon. Journal of Agricultural and Food Chemistry, 54(9), 3391-3401. https://doi.org/10.1021/jf053001p

    Viji, P., Debbarma, J., & Ravishankar, C. N. (2022). Research developments in the applications of microwave energy in fish processing: A review. Trends in Food Science & Technology, 123, 222-232. https://doi.org/10.1016/j.tifs.2022.03.010

    Wang, D., Zhou, F., Lai, D., Zhang, Y., Hu, J., & Lin, S. (2021). Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage. Ultrasonics Sonochemistry, 78, 105715. https://doi.org/10.1016/j.ultsonch.2021.105715

    Warne, D. (1988). Manual on fish canning. FAO.

    Zhang, Y., Wei, J., Yuan, Y., Chen, H., Dai, L., Wang, X., & Yue, T. (2019). Bactericidal effect of cold plasma on microbiota of commercial fish balls. Innovative Food Science & Emerging Technologies, 52, 394-405. https://doi.org/10.1016/j.ifset.2019.01.019

    Zhang, J., Yu, X., Guan, B., Hu, Y., Li, X., Zeng, J., & Ni, Y. (2022). Identification and characterization of a novel cold-adapted GH15 family trehalase from the psychrotolerant Microbacterium phyllosphaerae LW106. Fermentation, 8(10), 471. https://doi.org/10.3390/fermentation8100471